Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.364
Filtrar
1.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582599

RESUMO

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Assuntos
Inseticidas , Receptores Nicotínicos , Tisanópteros , Animais , Tisanópteros/metabolismo , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Agentes de Controle Biológico/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insetos/genética , Macrolídeos/farmacologia , Combinação de Medicamentos
2.
Fungal Biol ; 128(2): 1643-1656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575237

RESUMO

Microsclerotia (MS) are considered one of the most promising propagules for use as active ingredients in biopesticides due to their tolerance to abiotic factors and ability to produce infective conidia for the control of pests. Therefore, the objective of this research was to establish the conditions required to induce the formation of microsclerotia in Metarhizium robertsii Mt004 and to study its development process, tolerance to abiotic factors and insecticidal activity of MS-derived conidia. M. robertsii started to form hyphal aggregates after 2 days and looked more compact after 8 days. MS were mature and pigmented after 20 days. The final yield was 2.0 × 103 MS/mL and MS size varied between 356.9 and 1348.4 µm. Ultrastructure analysis revealed that mature MS contained only a few live cells embedded in an extracellular matrix. Mature MS were more tolerance to UV-B radiation, heat and storage trials than conidia from Solid State Fermentation. MS-derived conidia were as virulent as conidia against Diatraea saccharalis larvae. These results showed that MS are promising propagules for the development of more persistent and efficient biopesticides for harsh environmental conditions. Our findings provide a baseline for production and a better understanding of microsclerotia development in M. robertsii strains.


Assuntos
Inseticidas , Metarhizium , Inseticidas/farmacologia , Agentes de Controle Biológico , Meios de Cultura/química , Esporos Fúngicos , Controle Biológico de Vetores/métodos
3.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442350

RESUMO

The Middle East Asia Minor 1 biotype of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a greenhouse and field crop pest of global significance. The objective of this study was to assess the potential of the generalist predatory thrips, Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), as a biological control agent for B. tabaci. This was achieved by determining the functional responses of F. vespiformis larvae and adults to the egg and nymphal stages of B. tabaci under laboratory conditions. Analyses consisted of 10 replicates of each predator and prey stage combination on bean leaf discs for a 24-h period. Following logistic regression analyses to determine the functional response type exhibited, response parameters were estimated with nonlinear least squares regression using Roger's equation. Results showed that F. vespiformis larvae and adults exhibited a Type II functional response when feeding on immature B. tabaci. The handling times (Th) of F. vespiformis larvae and adults were magnitudes higher for B. tabaci nymphs than they were for eggs, which were in part driven by the higher attack rates (a) observed on eggs. The maximum attack rate (T/Th) for B. tabaci eggs and nymphs exhibited by first-stage larvae, second-stage larvae, and adult F. vespiformis increased with increasing predator age. Results from this study suggest that F. vespiformis larvae and particularly adults are promising biological control agents for B. tabaci and are efficient predators at both low and high prey densities.


Assuntos
Hemípteros , Tisanópteros , Animais , Óvulo , Ásia Oriental , Agentes de Controle Biológico , Larva , Ninfa
4.
Biomolecules ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38540771

RESUMO

ß-cyclodextrin (ß-CD) is a good host for the encapsulation of fennel and basil essential oils (FEO and BEO, respectively) and the formation of inclusion complexes (ICs) using the co-precipitation method. According to the results of the GC/MS analysis conducted in this study, monoterpenes and monoterpenoids were the dominant chemical groups in total FEO, while in BEO, these two groups occurred along with sesquiterpenes and sesquiterpenoids. The presence of dominant compounds from both EOs was validated using the FT-IR spectra of ICs, which indicated successful complexation. Analyses conducted using SPME/GC-MS showed the continuous emission of volatiles over 24 h from both ICs. Under SEM, particles of both ICs appeared to have a rectangular or rhomboid morphology and few aggregates. The insecticidal properties of EOs and ICs with ß-CD were tested on the Colorado potato beetle (CPB) as a model pest. The inclusion complex of ß-CD with FEO altered the developmental dynamic and body mass of the CPB. The initial increase in the proteolytic activity of CPB larvae fed with potato plants sprayed with ICs was not maintained for long, and the proteolytic efficacy of treated larvae remained in line with that of the control larvae. Future investigations will focus on manipulating the volume of EOs used and the treatment duration for optimal efficacy and potential application.


Assuntos
Foeniculum , Ocimum basilicum , Óleos Voláteis , Sesquiterpenos , beta-Ciclodextrinas , Óleos Voláteis/química , Ocimum basilicum/química , Agentes de Controle Biológico , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química , Monoterpenos , Sesquiterpenos/farmacologia
5.
Methods Mol Biol ; 2756: 291-304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427300

RESUMO

Full compatible interactions between crop plants and endoparasitic sedentary nematodes (ESNs) lead to severe infestation of the roots and plant growth impairing, as well as to the increase of nematode population in the soil that is a threat for the next planting crop. In the absence of activators, basic plant defense is overcome by nematode secretion of effectors that suppress defense gene expression, inhibit ROS generation and the oxidative burst used by plants to hamper nematode feeding site settlement and limit its development and reproduction. Activators can be exogenously added as a preventive measure to prime plants and strengthen their defense against ESNs. Activators can be an array of antioxidant compounds or biocontrol agents, such as mutualist microorganisms living in the rhizosphere (biocontrol fungi (BCF), arbuscular mycorrhizal fungi (AMF), plant growth-promoting bacteria (PGPB), etc.). In this chapter, methods are described for usage of both salicylic acid (SA) and its methylated form (Met-SA), and BCF/AMF as elicitors of resistance of vegetable crops against root-knot nematodes (RKNs). The rhizosphere-living BCF/AMF were recovered from commercial formulates pre-incubated in suitable growth media and provided exclusively as soil drench of potted plants. The plant hormones SA and Met-SA were provided to plants as soil drench, foliar spray, and root dip. It is indicated that activators' dosages and plant age are crucial factors in determining the success of a pre-treatment to reduce nematode infection. Therefore, dosages should be expressed as amounts of activators per g of plant weight at treatment. Thresholds exist above which dosages start to work; overdoses were found to be toxic to plants and useless as activators.


Assuntos
Micorrizas , Nematoides , Animais , Agentes de Controle Biológico/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Nematoides/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Micorrizas/metabolismo , Produtos Agrícolas/metabolismo , Solo
6.
Sci Rep ; 14(1): 6029, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472262

RESUMO

Fall armyworm, Spodoptera frugiperda (FAW) is a cosmopolitan crop pest species that has recently become established in sub-Saharan Africa and Southeast Asia. Current FAW control is almost entirely dependent on synthetic pesticides. Biopesticides offer a more sustainable alternative but have limitations. For example, pyrethrum is an effective botanical insecticide with low mammalian toxicity but is highly UV labile, resulting in a rapid loss of efficacy in the field. Beauveria bassiana is an entomopathogenic fungus that is more persistent, but there is a time lag of several days before it causes insect mortality and leads to effective control. The combination of these biopesticides could mitigate their drawbacks for FAW control. Here we evaluated the efficacy of pyrethrum and B. bassiana as individual treatments and in combination against 3rd instar FAW. Four different combinations of these two biopesticides were tested, resulting in an antagonistic relationship at the lowest concentrations of B. bassiana and pyrethrum (1 × 104 conidia mL-1 with 25 ppm) and an additive effect for the other 3 combined treatments (1 × 104 conidia mL-1 with 100 ppm and 1 × 105 conidia mL-1 with 25 ppm and 100 ppm pyrethrum). Additionally, a delay in efficacy from B. bassiana was observed when combined with pyrethrum as well as a general inhibition of growth on agar plates. These results appear to show that this particular combination of biopesticides is not universally beneficial or detrimental to pest control strategies and is dependent on the doses of each biopesticide applied. However, the additive effect shown here at specific concentrations does indicate that combining biopesticides could help overcome the challenges of persistence seen in botanical pesticides and the slow establishment of EPF, with the potential to improve effectiveness of biopesticides for IPM.


Assuntos
Praguicidas , Piretrinas , Animais , Agentes de Controle Biológico , Larva , Controle de Pragas , Spodoptera/fisiologia
7.
World J Microbiol Biotechnol ; 40(4): 128, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451353

RESUMO

The entomopathogenic nematode Heterorhabditis bacteriophora, symbiotically associated with enterobacteria of the genus Photorhabdus, is a biological control agent against many insect pests. Dauer Juveniles (DJ) of this nematode are produced in industrial-scale bioreactors up to 100 m3 in liquid culture processes lasting approximately 11 days. A high DJ yield (> 200,000 DJ·mL-1) determines the success of the process. To start the mass production, a DJ inoculum proceeding from a previous monoxenic culture is added to pre-cultured (24 h) Photorhabdus bacteria. Within minutes after contact with the bacteria, DJ are expected to perceive signals that trigger their further development (DJ recovery) to reproductive hermaphrodites. A rapid, synchronized, and high DJ recovery is a key factor for an efficient culture process. In case of low percentage of DJ recovery, the final DJ yield is drastically reduced, and the amount of non-desired stages (males and non-fertilized females) hinders the DJ harvest. In a preliminary work, a huge DJ recovery phenotypic variability in H. bacteriophora ethyl methanesulphonate (EMS) mutants was determined. In the present study, two EMS-mutant lines (M31 and M88) with high and low recovery phenotypes were analyzed concerning their differences in gene expression during the first hours of contact with Photorhabdus supernatant containing food signals triggering recovery. A snapshot (RNA-seq analysis) of their transcriptome was captured at 0.5, 1, 3 and 6 h after exposure. Transcripts (3060) with significant regulation changes were identified in the two lines. To analyze the RNA-seq data over time, we (1) divided the expression profiles into clusters of similar regulation, (2) identified over and under-represented gene ontology categories for each cluster, (3) identified Caenorhabditis elegans homologous genes with recovery-related function, and (4) combined the information with available single nucleotide polymorphism (SNP) data. We observed that the expression dynamics of the contrasting mutants (M31 and M88) differ the most within the first 3 h after Photorhabdus supernatant exposure, and during this time, genes related to changes in the DJ cuticle and molting are more active in the high-recovery line (M31). Comparing the gene expression of DJ exposed to the insect food signal in the haemolymph, genes related to host immunosuppressive factors were not found in DJ upon bacterial supernatant exposure. No link between the position of SNPs associated with high recovery and changes in gene expression was determined for genes with high differential expression. Concerning specific transcripts, nine H. bacteriophora gene models with differential expression are provided as candidate genes for further studies.


Assuntos
Caenorhabditis elegans , Transcriptoma , Feminino , Masculino , Animais , Metanossulfonato de Etila , Agentes de Controle Biológico , Reatores Biológicos
8.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38479782

RESUMO

Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future.


Assuntos
Ecotoxicologia , Solo , Microbiologia do Solo , Agentes de Controle Biológico , Agricultura
9.
Neotrop Entomol ; 53(2): 391-399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347318

RESUMO

The peanut thrips, Enneothrips enigmaticus (Thysanoptera: Thrypidae), is an important pest of the peanut (Arachis hypogaea) in South America. Due to concerns about the environment and human health induced by the extensive use of pesticides in the management control of pests, environmentally and friendlier tactics must be targeted. Thus, this study investigates, for the first time, the behavior of Xylocoris sordidus (Hemiptera: Anthocoridae) as a biological control agent for E. enigmaticus. The methodology included no-choice tests to assess whether the predation rate varies according to the developmental stage of the prey, as well as the predator's developmental stage with the highest predation capacity. Additionally, an analysis of the functional response of adult and 5th instar nymphs of X. sordidus exposed to different densities of E. enigmaticus nymphs (1, 2, 4, 8, 16, and 32) was conducted. The results confirm the predation of peanut thrips by X. sordidus, with a higher predation rate in the nymphal stages of the prey. There was no difference in predation capacity between predator nymphs and adults, and exhibiting a type II functional response. Therefore, the potential of X. sordidus as a biological control agent for E. enigmaticus is confirmed, showing the importance of adopting measures to preserve this predator in peanut crops.


Assuntos
Hemípteros , Heterópteros , Tisanópteros , Humanos , Animais , Agentes de Controle Biológico , Heterópteros/fisiologia , Comportamento Predatório , Ninfa/fisiologia , Arachis , Controle Biológico de Vetores
10.
J Sci Food Agric ; 104(7): 4383-4390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323469

RESUMO

BACKGROUND: A variety of environmental factors can disrupt biotic interactions between plants, insects and soil microorganisms with consequences for agricultural management and production. Many of these belowground interactions are mediated by volatile organic compounds (VOCs) which can be used for communication under appropriate environmental conditions. Behavioral responses to these compounds may likewise be dependent on varying soil conditions which are influenced by a changing climate. To determine how changing environmental conditions may affect VOC-mediated biotic interactions, we used a belowground system where entomopathogenic nematodes (EPNs) - tiny roundworm parasitoids of soil-borne insects - respond to VOCs by moving through the soil pore matrix. Specifically, we used two genera of EPNs - Heterorhabditis and Steinernema - that are known to respond to four specific terpenes - α-pinene, linalool, d-limonene and pregeijerene - released by the roots of plants in the presence of herbivores. We assessed the response of these nematodes to these terpenes under three moisture regimes to determine whether drier conditions or inundated conditions may influence the response behavior of these nematodes. RESULTS: Our results illustrate that the recovery rate of EPNs is positively associated with soil moisture concentration. As soil moisture concentration increases from 6% to 18%, substantially more nematodes are recovered from bioassays. In addition, we find that soil moisture influences EPN preference for VOCs, as illustrated in the variable response rates. Certain compounds shifted from acting as a repellent to acting as an attractant and vice versa depending on the soil moisture concentration. CONCLUSION: On a broad scale, we demonstrate that soil moisture has a significant effect on EPN host-seeking behavior. EPN efficacy as biological control agents could be affected by climate change projections that predict varying soil moisture concentrations. We recommend that maintaining nematodes as biological control agents is essential for sustainable agriculture development, as they significantly contribute not only to soil health but also to efficient pest management. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Nematoides , Solo , Animais , Agentes de Controle Biológico , Controle Biológico de Vetores/métodos , Nematoides/fisiologia , Insetos , Terpenos
11.
Microbiol Res ; 282: 127638, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422858

RESUMO

The plant-parasitic root-knot nematode Meloidogyne exigua causes significant damage and is an important threat in Coffea arabica plantations. The utilization of plant-beneficial microbes as biological control agents against sedentary endoparasitic nematodes has been a longstanding strategy. However, their application in field conditions to control root-knot nematodes and their interaction with the rhizospheric microbiota of coffee plants remain largely unexplored. This study aimed to investigate the effects of biological control agent-based bioproducts and a chemical nematicide, used in various combinations, on the control of root-knot nematodes and the profiling of the coffee plant rhizomicrobiome in a field trial. The commercially available biological products, including Trichoderma asperellum URM 5911 (Quality), Bacillus subtilis UFPEDA 764 (Rizos), Bacillus methylotrophicus UFPEDA 20 (Onix), and nematicide Cadusafos (Rugby), were applied to adult coffee plants. The population of second-stage juveniles (J2) and eggs, as well as plant yield, were evaluated over three consecutive years. However, no significant differences were observed between the control group and the groups treated with bioproducts and the nematicide. Furthermore, the diversity and community composition of bacteria, fungi, and eukaryotes in the rhizosphere soil of bioproduct-treated plants were evaluated. The dominant phyla identified in the 16 S, ITS2, and 18 S communities included Proteobacteria, Acidobacteria, Actinobacteria, Ascomycota, Mortierellomycota, and Cercozoa in both consecutive years. There were no significant differences detected in the Shannon diversity of 16 S, ITS2, and 18 S communities between the years of data. The application of a combination of T. asperellum, B. subtilis, and B. methylotrophicus, as well as the use of Cadusafos alone and in combination with T. asperellum, B. subtilis, and B. methylotrophicus, resulted in a significant reduction (26.08%, 39.13%, and 21.73%, respectively) in the relative abundance of Fusarium spp. Moreover, the relative abundance of Trichoderma spp. significantly increased by 500%, 200%, and 100% at the genus level, respectively, compared to the control treatment. By constructing a co-occurrence network, we discovered a complex network structure among the species in all the bioproduct-treated groups. However, our findings indicate that the introduction of exogenous beneficial microbes into field conditions was unable to modulate the existing microbiota significantly. These findings suggest that the applied bioproducts had no significant impact on the reshaping of the overall microbial diversity in the rhizosphere microbiome but rather recruited selected microrganisms and assured net return to the grower. The results underscore the intricate nature of the rhizosphere microbiome and suggest the necessity for alternate biocontrol strategies and a re-evaluation of agricultural practices to improve nematode control by aligning with the complex ecological interactions in the rhizosphere.


Assuntos
Coffea , Compostos Organotiofosforados , Tylenchoidea , Animais , Café , Solo/química , Microbiologia do Solo , Bactérias/genética , Antinematódeos , Coffea/microbiologia , Rizosfera , Agentes de Controle Biológico
12.
Arch Microbiol ; 206(3): 128, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416227

RESUMO

This study was carried out to investigate the use of different substrates for the production of Escovopsis conidia and verify the virulence of four different isolates cultured on four types of substrates using a novel bioassay. Escovopsis isolates were molecularly identified, based on Internal Transcribed Spacer (ITS) nucleotide sequences. To evaluate conidial production, suspensions (1 × 106 conidia mL-1) of each Escovopsis isolate were inoculated onto four substrates (parboiled rice, white rice, rolled oats, and corn grits). After 14 days, conidial yields were assessed. The virulence of each isolate cultured on the four substrates was tested against Leucoagaricus fungus garden fragments, by directly applying 500 µL of each conidial suspension (1 × 107 conidia mL-1), and the development of the parasite was monitored daily until it completely colonized the fungus garden. It was observed that rolled oats were the best substrate for conidial production, with a yield of 1.7 × 107 to 2.0 × 108 conidia mL-1. Furthermore, isolate AT-01 produced the highest number of conidia when compared with the other isolates. Regardless of the substrate used to produce AT-01 conidia, this isolate completely colonized the fungus garden 6 days post inoculation (dpi), followed by AT-02, AC-01, and AC-2. High levels of both conidial production and virulence against the leaf-cutting ant fungus garden were observed here.


Assuntos
Agaricales , Formigas , Hypocreales , Oryza , Parasitos , Animais , Esporos Fúngicos , Jardins , Agentes de Controle Biológico , Grão Comestível , Zea mays
13.
Arch Microbiol ; 206(3): 129, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416214

RESUMO

Phytopathogenic microorganisms have caused blight diseases that present significant challenges to global agriculture. These diseases result in substantial crop losses and have a significant economic impact. Due to the limitations of conventional chemical treatments in effectively and sustainably managing these diseases, there is an increasing interest in exploring alternative and environmentally friendly approaches for disease control. Using endophytic fungi as biocontrol agents has become a promising strategy in recent years. Endophytic fungi live inside plant tissues, forming mutually beneficial relationships, and have been discovered to produce a wide range of bioactive metabolites. These metabolites demonstrate significant potential for fighting blight diseases and provide a plentiful source of new biopesticides. In this review, we delve into the potential of endophytic fungi as a means of biocontrol against blight diseases. We specifically highlight their significance as a source of biologically active compounds. The review explores different mechanisms used by endophytic fungi to suppress phytopathogens. These mechanisms include competing for nutrients, producing antifungal compounds, and triggering plant defense responses. Furthermore, this review discusses the challenges of using endophytic fungi as biocontrol agents in commercial applications. It emphasizes the importance of conducting thorough research to enhance their effectiveness and stability in real-world environments. Therefore, bioactive metabolites from endophytic fungi have considerable potential for sustainable and eco-friendly blight disease control. Additional research on endophytes and their metabolites will promote biotechnology solutions.


Assuntos
Antifúngicos , Fungos , Agricultura , Agentes de Controle Biológico , Gerenciamento Clínico
14.
Toxicon ; 240: 107653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387755

RESUMO

Population growth leads to the need for more efficient techniques and compounds in agriculture, such as pesticides, to deal with the ever-growing demand. Pesticides may end up in the environment, often compromising the ecosystem affecting all organisms including humans. Therefore, the consequences of exposure to these compounds to biota and humans needs to be assessed. Bearing this in mind, the aim of this study was to examine the in vitro cytotoxicity and genotoxicity attributed to exposure to the biopesticide Turex® utilizing the liver cell line HepG2. Cells were incubated with biopesticide Turex® at 250, 500, 1000, 1500 or 2000 µg/L in both non-activated and activated forms for 24 and 48 h. Subsequent effects on cell viability were assessed using the MTT. The influence on cell cycle dynamics was determined by flow cytometry, while DNA damage was measured by the comet assay. Data demonstrated that activated Turex® induced cytotoxicity and DNA damage after 48 h in HepG2 cell line. The cell cycle progression was not markedly affected by Turex® at any concentration or duration of exposure. In conclusion, data demonstrated the potential adverse effects attributed to exposure to biopesticide Turex® in human cell line HepG2. Consequently, this type of biopesticide needs to be further investigated to determine the potential adverse in vivo effects on various non-target organisms.


Assuntos
Agentes de Controle Biológico , Praguicidas , Humanos , Células Hep G2 , Agentes de Controle Biológico/farmacologia , Ecossistema , Dano ao DNA , Pontos de Checagem do Ciclo Celular , Praguicidas/toxicidade , Ciclo Celular , Sobrevivência Celular
15.
Sci Rep ; 14(1): 3220, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332256

RESUMO

The egg parasitoids of the genus Trichogramma are important potential biological control agents for a wide range of lepidopteran pests. Cold storage of host eggs has been proposed as a valuable technique for ensuring the release of sufficient parasitoid numbers whenever it is needed. In this context, the impact of low temperatures to induce quiescence in T. evanescens Westwood and T. chilonis Ishii was studied using eggs of Indian meal moth Plodia interpunctella (Hübner). Prepupae of the parasitoids were stored for 15, 30, 45, 60 and 75 d at 4 °C, following a 7 d period of acclimation at 10 °C. Both parasitoid species seem to survive unfavorable temperature conditions by entering a state of quiescence. Parasitism, adult emergence, sex ratio and progeny quality were not affected by cold storage in either parasitoid species for up to 30 d of storage. Parasitized host eggs of P. interpunctella can be stored for up to 60 d at 4 °C for both parasitoids, but there was no emergence at 75 d. General productivity values gradually decreased as the duration of storage lengthened for both species. Our results clearly reveal that the eggs parasitized by these species can be stored for up to 30 d at 4 °C in a state of quiescence without much loss of their performance compared to the control eggs.


Assuntos
Himenópteros , Mariposas , Vespas , Animais , Temperatura , Temperatura Baixa , Agentes de Controle Biológico
16.
Microbiol Spectr ; 12(4): e0326423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363138

RESUMO

Corn head smut is a disease caused by the fungus Sporisorium reilianum. This phytosanitary problem has existed for several decades in the Mezquital Valley, an important corn-producing area in central Mexico. To combat the problem, a strain identified as Bacillus subtilis 160 was applied in the field, where it decreased disease incidence and increased crop productivity. In this study, the sequencing and analysis of the whole genome sequence of this strain were carried out to identify its genetic determinants for the production of antimicrobials. The B. subtilis 160 strain was found to be Bacillus velezensis. Its genome has a size of 4,297,348 bp, a GC content of 45.8%, and 4,174 coding sequences. Comparative analysis with the genomes of four other B. velezensis strains showed that they share 2,804 genes and clusters for the production of difficidin, bacillibactin, bacilysin, macrolantin, bacillaene, fengycin, butirosin A, locillomycin, and surfactin. For the latter metabolite, unlike the other strains that have only one cluster, B. velezensis 160 has three. A cluster for synthesizing laterocidine, an antimicrobial reported only in Brevibacillus laterosporus, was also identified. IMPORTANCE: In this study, we performed sequencing and analysis of the complete genome of the strain initially identified as Bacillus subtilis 160 as part of its characterization. This bacterium has shown its ability to control corn head smut in the field, a disease caused by the basidiomycete fungus Sporisorium reilianum. Analyzing the complete genome sequence not only provides a more precise taxonomic identification but also sheds light on the genetic potential of this bacterium, especially regarding mechanisms that allow it to exert biological control. Employing molecular and bioinformatics tools in studying the genomes of agriculturally significant microorganisms offers insights into the development of biofungicides and bioinoculants. These innovations aim to enhance plant growth and pave the way for strategies that boost crop productivity.


Assuntos
Anti-Infecciosos , Bacillus , Basidiomycota , Agentes de Controle Biológico/metabolismo , Zea mays/metabolismo , Genoma Bacteriano , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Basidiomycota/metabolismo , Fungos/genética
17.
World J Microbiol Biotechnol ; 40(4): 108, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38403797

RESUMO

The incorporation of biological control agents (BCAs) such as Trichoderma spp. in agricultural systems favors the transition towards sustainable practices of plant nutrition and diseases control. Novel bioproducts for crop management are called to guarantee sustainable antagonism activity of BCAs and increase the acceptance of the farmers. The encapsulation in polymeric matrices play a prominent role for providing an effective carrier/protector and long-lasting bioproduct. This research aimed to study the influence of biopolymer in hydrogel capsules on survival and shelf-life of T. koningiopsis. Thus, two hydrogel capsules prototypes based on alginate (P1) and amidated pectin (P2), containing conidia of T. koningiopsis Th003 were formulated. Capsules were prepared by the ionic gelation method and calcium gluconate as crosslinker. Conidia releasing under different pH values of the medium, survival of conidia in drying capsules, storage stability, and biocontrol activity against rice sheath blight (Rhizoctonia solani) were studied. P2 prototype provided up to 98% survival to Th003 in fluid bed drying, faster conidia releasing at pH 5.8, storage stability greater than 6 months at 18 °C, and up to 67% of disease reduction. However, both biopolymers facilitate the antagonistic activity against R. solani, and therefore can be incorporated in novel hydrogel capsules-based biopreparations. This work incites to develop novel biopesticides-based formulations with potential to improve the delivery process in the target site and the protection of the active ingredient from the environmental factors.


Assuntos
Hypocreales , Oryza , Trichoderma , Hidrogéis , Doenças das Plantas/prevenção & controle , Rhizoctonia , Esporos Fúngicos , Agentes de Controle Biológico/farmacologia
18.
Food Chem ; 442: 138443, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241992

RESUMO

Degradation of trans-cinnamaldehyde and limonene in cucumber was evaluated under laboratory and greenhouse conditions. Two commercial biopesticides, one based on cinnamon extract and other from orange oil, were utilized. Compound degradation was monitored using gas chromatography (GC) and ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole-high-resolution mass analyzer (Q-Orbitrap). In both studies, trans-cinnamaldehyde followed a second-order degradation kinetics, whereas limonene followed a first-order kinetics. The half-life values (DT50 or t1/2) for trans-cinnamaldehyde ranged from 2.02 to 2.49 h, while for limonene this value ranged from 0.49 to 6.17 h. Non-targeted analysis (suspect and unknown modes) allowed for the detection of trans-cinnamaldehyde and limonene metabolites. Benzyl alcohol, cinnamyl alcohol, cinnamic acid, p-tolylacetic acid and 4-hydoxycinnamic acid were tentatively identified as trans-cinnamaldehyde metabolites. While three limonene metabolites, carvone, limonene-1,2-epoxide, and perillyl alcohol, were tentatively identified. Greenhouse studies have not revealed any metabolites of these compounds because the parent compounds degrade more quickly.


Assuntos
Acroleína/análogos & derivados , Cucumis sativus , Limoneno , Cromatografia Líquida de Alta Pressão/métodos , Agentes de Controle Biológico , Alérgenos , Cromatografia Gasosa
19.
Bioengineered ; 15(1): 2307668, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38265757

RESUMO

Enzymatic hydrolysis of organic waste is gaining relevance as a complementary technology to conventional biological treatments. Moreover, biorefineries are emerging as a sustainable scenario to integrate waste valorization and high-value bioproducts production. However, their application on municipal solid waste is still limited. This study systematically evaluates the techno-economic feasibility of the conversion of the organic fraction of municipal solid waste (OFMSW) into high-value bioproducts through enzymatic hydrolysis. Two key variables are examined: (a) the source of the enzymes: commercial or on-site produced using OFMSW, and (b) the treatment of the solid hydrolyzate fraction: solid-state fermentation (SSF) for the production of biopesticides or anaerobic digestion for the production of energy. As a result, four different biorefinery scenarios are generated and compared in terms of profitability. Results showed that the most profitable scenario was to produce enzymes on-site and valorize the solid fraction via SSF, with an internal rate of return of 13%. This scenario led to higher profit margins (74%) and a reduced payback time (6 years), in contrast with commercial enzymes that led to an unprofitable biorefinery. Also, the simultaneous production of higher-value bioproducts and energy reduced the economic dependence of OFMSW treatment on policy instruments while remaining energetically self-sufficient. The profitability of the biorefinery scenarios evaluated was heavily dependent on the enzyme price and the efficiency of the anaerobic digestion process, highlighting the importance of cost-efficient enzyme production alternatives and high-quality OFMSW. This paper contributes to understanding the potential role of enzymes in future OFMSW biorefineries and offers economical insights on different configurations.


Techno-economic analysis to assess enzyme origin and solid hydrolysate fate.The viability of enzymatic hydrolysis depends on the cost and origin of enzymes.On-site produced enzymes cut payback time to 6 years, elevating profits by 74%.Anaerobic digestion and solid-state fermentation can be complementary technologies.High-value bioproducts are key to making organic waste biorefineries profitable.


Assuntos
Agentes de Controle Biológico , Resíduos Sólidos , Anaerobiose , Fermentação , Hidrólise
20.
Neotrop Entomol ; 53(2): 216-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38206509

RESUMO

In South America, the resident pupal parasitoid Trichopria anastrephae Costa Lima (Hymenoptera: Diapriidae) is a potential biological control agent of the pest Drosophila suzukii Matsumura (Diptera: Drosophilidae). In the present study, we (1) examined the behavior of T. anastrephae towards different host (D. suzukii) and host-substrate (strawberry) cues in choice and non-choice bioassays in laboratory, and (2) examined the density-dependent parasitism of T. anastrephae in D. suzukii-infested strawberries in a greenhouse. When given a choice, female parasitoids walked longer over chambers with fruits infested with eggs, larvae, or pupae of D. suzukii, when compared to healthy uninfested strawberries, and over overripe fruits when compared to unripe or ripe fruits. In the greenhouse assay, we observed an increase in parasitism and a decrease in the number of D. suzukii emerging per fruit with an increase in the number of parasitoids released. Our results allow a better understanding of the behavior and parasitism of T. anastrephae in D. suzukii-infested strawberries and provide useful data for potential biological control programs using this parasitoid.


Assuntos
Fragaria , Himenópteros , Feminino , Animais , Agentes de Controle Biológico , Drosophila , América do Sul , Pupa , Frutas , Controle de Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...